关于数学的故事【祖冲之关于数学的故事】

更新:03-01 故事会 我要投稿 纠错 投诉

数学界最传奇的存在,24岁一战封神,影响数学一个世纪

爸爸,

我不想搬砖了!

一直以来,都有模友留言给超模君,想超模君正经地介绍一次高斯,“我不要这些虚的,我要实实在在的高斯。”

好咯,超模君今天就还你们一个真实的高斯!

皮这一下真的很开心

卡尔·弗里德里希·高斯(C.F.Gauss)

数学神童小高斯

高斯出生在18世纪下半叶的德国,此时的欧洲忙于轰轰烈烈的工业革命,人们丝毫没有注意到,即将改写人类数学文明的高斯悄然降生。

然而,高斯在投胎这方面技术实在不咋滴。高斯父亲是个靠做小工混饭吃的底层人员,曾做过水泥工、园丁、小保险公司的评估师,而母亲自从结婚后,就成为职业家庭主妇。

幸运的是,虽然家庭不像拉格朗日富裕到天天想着破产,但至少每天都能开开心心吃饱长大。

从小时候开始,高斯就是个好奇宝宝,而且非常聪明,特别是对数字十分敏感,据说在高斯3岁的时候,乖巧的他看着正在计算借债账目的父亲,仅仅是通过自己的心算,高斯就发现了父亲计算过程中的错误。

高斯父亲对于高斯的表现啧啧称奇,觉得高斯很聪明,心中暗自决定,要让高斯继承他的手艺,成为一名优秀的水泥工人。

是的,即便高斯的聪明就摆在他面前,他也就只希望儿子长大后找到一份能够赚钱养家的工作就好,根本没想过把高斯送进学校,认为有钱吃饱饭才最重要,学问对于他们这种穷苦家庭可有可无

好在高斯的母亲一早就发现儿子过人的天赋,她不愿儿子成为像丈夫这样无知的人,并一直支持高斯学习。

除了母亲,高斯的舅舅也非常支持高斯继续学习。因为高斯的母亲和舅舅关系十分要好,自然的,舅舅对小高斯也十分偏爱,经常教小高斯算术方面的知识,高斯的启蒙教育多亏了他这那个聪明的舅舅。

舅舅弗利德里希是一个从事纺织贸易的商人,他发现高斯聪明伶俐,便经常用一些生动活泼的方式开发高斯的智力,还一直劝高斯父亲让孩子向学者方向发展。

7岁那年,高斯开始读小学。10岁的时候,他进入学校新创的数学班里学习,就是在这个数学班,诞生了高斯最为出名的那个故事:计算1+2+3+…+100=?

当时老师布特纳在课堂上提出这个问题的时候,也不指望眼前这些10岁孩子真的能解出来,然而,当他刚刚在黑板上写出这道题时,高斯立刻得出了答案:5050。

起初,布特纳并不相信高斯的这个答案,不过,高斯马上就向老师说了他的思路:1+100=101,2+99=101,······,1加到100一共有50组这样的数,因此很容易得到50X101=5050。

这时,布特纳终于察觉眼前的这个孩子着实是个不可多得的天才,便送给了高斯一本难度较深的数学书,对高斯说:“你已经超过了我,我没有什么东西可以教你了。”(你自己看书去吧)

后来,人们将这种方法称为高斯求和,高斯求和公式也就诞生了:

1+2+3+4+……+ n = n (n+1) /2

不过,这个故事的真实性很难考究,根据对高斯深有研究的数学史学家贝尔(E.T.Bell)的考证资料,布特纳当时给孩子们出的题极有可能是一道更难的题:81297+81495+81693+…+100899=?(公差为198,项数为100)

接着,高斯与布特纳的助手巴特尔斯(比高斯大10岁左右)很快变成无话不谈的朋友,高斯也因此接触到更深层的数学。

巴特尔斯的能力比布特纳高很多,后来成为了大学教授。

不过,在不久之后,巴特尔斯也没什么可以教给高斯的了,他与老师布特纳一致认为,这里已经容不下高斯这孩子了,高斯可以去接受更高的教育了。

于是,他们开始帮高斯寻找“下家”。

数学王子的成功之路

想要找“下家”?首先得过高斯粑粑这一关,毕竟高斯粑粑可是一个希望高斯子承父业——做泥水工的人。。。

经过几次拜访“洗脑”,细数高斯在数学这方面有对牛掰之后,高斯粑粑终于松口让高斯继续读书,不过,他本人不会出一分钱(其实就算想出也出不了多少钱吧)。最后,布特纳和巴特尔斯只好开始琢磨帮高斯寻找一个有钱人来资助的事情。

1788年,11岁的高斯有了老师和母亲的支持,不顾粑粑的反对,转到了文科学校(更高级一点的学校)读书。

在这里,高斯除了数学吊打其他同学(据说数学老师看了一次他的作业之后,就不让他上数学课了,因为没必要了),古典文学也是第一名,其他科目成绩也极好,老师们也非常注重对高斯这个全才的培养,还将高斯推荐给布伦斯维克公爵费迪南。

1791年,布伦斯维克公爵费迪南第一次召见了高斯,见识到高斯确实天资过人,表示十分同情高斯的家庭情况,决定资助高斯继续深造。

遇到“金主”之后,高斯终于得以继续他开挂的一生。

在公爵的资助下,高斯于1792年进入布伦兹维克的卡罗琳学院继续学习,开始研究高等数学。

卡罗琳学院拥有豪华的教学配置,在这里可以学习音乐、雕塑、击剑外,还能学习哲学、文学、数学、物理等,最重要的是聚集了一大批学识渊博的教授。

这些教授可能没有直接促成高斯的成功,但是却对高斯的人生起到了决定性的作用。因为这些教授一方面建立了一个追求知识、崇尚思辨的学习氛围,另一方面为图书馆充实了大量科学方面的藏书。

因此,高斯迷恋语言学的同时,也逐渐被牛顿、拉格朗日此类科学巨人的奇妙世界所吸引。

高斯在卡罗琳学院的学习生涯中,涉猎了二次剩余定理、误差的概率定理、最小二乘法、高斯素数定理等多类问题,为日后成为数学王子打下了坚实基础。

1795年,高斯主动要求去到哥廷根大学深造。在这里,高斯按照自己的目标,每天勤奋学习的同时,进行创造性的数学研究。(虽然期间高斯有对自己的未来,到底是要专攻古典文学还是数学,纠结了好一阵子。)

高斯上大学时就开始记载的数学日记

进入哥廷根大学后的某一天,高斯照常在晚饭后开始做导师给他布置的课后习题,但是这一天他觉得有点奇怪,因为平时导师只给他布置两道题,今天多布置了一题。

不过他也没细想,顺手就开始做题了。

前两题他和以前一样,分分钟就搞定了,但是那多出来的第三道题,让他挠了挠脑袋,一时无法下手。

这道题目的大意是:要求只用圆规和没有刻度的直尺,作出一个正十七边形。

晚上的时间总是过得很快,高斯绞尽脑汁,尝试了各种方法,终于在窗外蒙蒙亮的时候,他解决了这道难题。

当天下午,高斯把作业交给了导师的时候,惭愧地说:“您给我布置的第三道题,我竟然做了整整一个通宵,看来我还需要继续努力才行。”

导师听完后瞬间呆住了,缓缓开口问道:“真的解开了?”

原来,那道多出来的题目,是难住了阿基米德,让牛顿望而却步,困惑了数学界两千多年的世纪难题!

至于老师为什么把这道题目出给高斯,据说是导师自己找出来想研究研究,却不小心夹到了高斯的作业里面。

正是有导师这样每天的训练,这段学习生活也是高斯人生中的第一个爆发期,他不仅用短短4年拿下博士学位,还独立发现了二项式定理的一般形式、数论上的“二次互逆定理”、质数分布定理、算术几何平均。高斯还证明了怎样的正多边形可以用尺规作出来,并得到了相应的作法(没有发表),用代数的方法解决了困扰人们2000多年的几何难题。

博士毕业之后,高斯虽然取得了讲师资格,不过,高斯貌似还是适合安安静静做研究,讲课可以把整一班的人(当然包括他自己)无聊死的估计也只有高斯了……

最后,高斯只好选择回老家去......

刚回到老家的时候,高斯过得十分难堪。除了要忍受粑粑对自己的冷嘲热讽(高斯的粑粑瞧不起他花公爵的钱完成学业),还要忍受人们的闲言碎语,毕竟花了那么多年纳税人的钱完成学业,还似乎并没有大获成功。

于是,高斯只好硬着头皮再去找公爵要点资金补助,幸好公爵十分慷慨,高斯承蒙金主公爵的照顾,无需在学校教书也能过得风生水起,不用担心钱的问题:

没地方住?公爵我送你一幢公寓!

想打印发表你那篇很牛逼的博士论文(发现了著名的代数基本定理)?无论多长,公爵我帮你出印刷费!

想出书?你负责编好就行,其他事公爵我都会帮你解决!

对于这一切,高斯表示很感动,所以,在1801年出版的《算术研究》中,高斯写下了真诚的感谢语:“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究。”

1801年出版的《算术探讨》

确实,公爵的资助对高斯的成才起到了很重要的作用,如果没有他,估计高斯会被父亲逼着去做泥水工了,那个对后世产生巨大影响的数学王子就不存在了。

不过,在1806年,公爵战死沙场,再加上妻子的去世,高斯深受打击,甚至有过轻生的念头。

高斯没有跟任何人诉说过自己的苦闷,得知这些也只是后来人们整理高斯手稿的时候,发现了高斯留下的一句话:“对我来说,死去也比这样的生活更好受些。”

庆幸的是,数学研究可以让高斯转移注意力,他找了一份工作维持生计之后,便沉迷研究,并于1807年前往哥廷根天文台就任主任一职。

其实,早在1801年,高斯就帮天文学界算出谷神星(火星和木星间有一颗新星,当时人们无法判定它是行星还是彗星)的轨道,并一举在天文学界成名,震惊整个欧洲,因此受邀担任哥廷根天文台的主任。

虽然人们对高斯当时使用的具体计算方法不太清楚,但可以知道的是,高斯在有关误差的概率性研究基础上,使用了如今我们判定为统计性手法的某种方法,这个方法就是于1809年发表他的著作《天体运动论》中的“最小二乘法”。

1806年,法国科学家勒让德也独立发现“最小二乘法”,但因不为世人所知而默默无闻,而勒让德也曾与高斯为谁最早创立最小二乘法原理而发生争执,不过,由于后来高斯提供的关于最小二乘法的优化效果比其他人的证明都强很多,因此被称为高斯-莫卡夫定理。

从此,高斯就一直呆在哥廷根,一边忙着天文台的工作,一边继续数学研究,有时也琢磨研究点新的东西,比如:

为了测量地球表面的形状和大小,他发明了回光仪,顺便还发展了曲面论;

感觉磁学很有趣,他又跑去跟实验物理学家韦伯合作,一不小心制成了世界第一个电报机,设立了磁观测站,还画出了世界首张地球磁场图,并且定了地球磁南极和磁北极的位置。

神说:要有我,就有了我

高斯的一生都在源源不断地出成果,总共发表了323篇著作,提出了400多项科学创见(不过仅发表了178项,剩下很多都是后世才被人们从他手稿里发现),以他名字命名的成果达110个,领域涵盖数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论、光学等。

高斯从来都不是那种抢着发表成果的人,他对待自己的研究工作非常严谨,不是百分百确定是不会轻易说出来的,尽管很多数学家劝他不要太固执,将那些理论发表出来对数学界说不定会很有利呢?他仍然坚持说:“宁可发表少,但发表的东西是成熟的成果。

其中,很有名的一个故事就是关于非欧几何的发展。

作为非欧几何的的创始人之一的波尔约(其父亲是高斯老同学),就曾将平行公理的证明成果寄给高斯,想要得到高斯的认可,没想到却受到高斯这样一句回信:

to praise it would mean to praise myself.(我无法夸赞他,因为夸赞他就等于夸奖我自己)

原来,早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

爱因斯坦曾这样评价高斯:“他(高斯)对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

美国著名数学家贝尔也说过:“在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能比当今数学还要先进半个世纪或更多的时间。

数学家小故事:撬起整个地球的阿基米德

阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

阿基米德诞生于希腊西西里岛叙拉古附近的一个小村庄,他出生于贵族,与叙拉古的赫农王有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。阿基米德的意思是大思想家,阿基米德受家庭的影响,从小就对数学、天文学特别是古希腊的几何学产生了浓厚的兴趣。

阿基米德在亚历山大跟随过许多著名的数学家学习,包括有名的几何学大师—欧几里德,欧几里得阿基米德在这里学习和生活了许多年,他兼收并蓄了东方和古希腊的优秀文化遗产,对其后的科学生涯中作出了重大的影响,奠定了阿基米德日后从事科学研究的基础。

阿基米德在数学上有着极为光辉灿烂的成就,特别是在几何学方面。

阿基米德给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。

他还给出正抛物旋转体浮在液体中平衡稳定的判据。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。

阿基米德的数学思想中蕴涵微积分,阿基米德的《方法论》中已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究,贯穿全篇的则是如何将数学模型进行物理上的应用。

他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

阿基米德将欧几里德提出的趋近观念作了有效的运用。他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。阿基米德还利用割圆法求得π的值介于3.14163和3.14286之间。

另外他算出球的表面积是其内接最大圆面积的四倍,又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。

阿基米德研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是因为纪念他而命名。另外他在《数沙者》一书中,他创造了一套记大数的方法,简化了记数的方式。

阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图鲜艳的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”。

链接|阿基米德的小故事

巧测

国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了!”。

阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。

大船巧入海

阿基米德曾说:“给我一个支点、我就能举起地球!”

叙拉古国王听说后,对阿基米德说:“凭着宙斯(宙斯是希腊神话中的众神之王,主管天、雷、电和雨)起誓,你说的事真是稀奇古怪,阿基米德!”阿基米德向国王解释了杠杆的特性以后,国王说:“到哪里去找一个支点,把地球举起来呢?”

“这样的支点是没有的。”阿基米德回答说。

“那么,要叫人相信力学的神力就不可能了?”国王说。

“不,不,你误会了,陛下,我能够给你举出别的例子。”阿基米德说。

国王说:“你太吹牛了!你且替我推动一样重的东西,看你讲的话怎样。”当时国王正有一个困难的问题,就是他替埃及王造了一艘很大的船。船造好后,动员了叙拉古全城的人,也没法把它推下水。阿基米德说:“好吧,我替你来推这一只船吧。”

阿基米德离开国王后,就利用杠杆和滑轮的子理,设计、制造了一套巧妙的机械。把一切都准备好后,阿基米德请国王来观看大船下水。他把一根粗绳的末端交给国王,让国王轻轻拉一下。

顿时,那艘大船慢慢移动起来,顺利地滑下了水里,国王和大臣们看到这样的奇迹,好像看耍魔术一样,惊奇不已!于是,国王信服了阿基米德,并向全国发出布告:“从此以后,无论阿基米德讲什么,都要相信他……”

阿基米德在数学和物理上的成就为人类社会的进步做出了巨大的贡献,这位伟人在生命结束之时都在计算,这种精神直到今天都是值得我们学习的。(来源|搜狐

无穷的故事

作者 | [美]斯蒂夫·斯托加茨

来源 | 节选自《微积分的力量》,中信出版社,2021.1, 好玩的数学获授权转载。

作为桥梁的无穷

微积分最初是几何学的产物。在公元前250年左右的古希腊,掀起了一小股解决曲线之谜的数学热潮。这些爱好者有一项雄心勃勃的计划,那就是利用无穷在曲线形状和直线形状之间搭建一座桥梁。他们希望当这种联系建立起来的时候,直线几何学的方法和技巧可以跨越这座桥梁,为破解曲线之谜贡献力量。在无穷的帮助下,所有古老的问题都将迎刃而解。至少,他们设定的目标是这样的。

当时,这个计划看起来一定相当牵强。无穷的名声备受质疑,除了可怕得要命以外,人们觉得它一无是处。更糟糕的是,它模糊不清,令人困惑。它到底是什么呢,一个数字,一个地方,还是一个概念?

不过,我们很快就会在接下来的章节中看到,无穷其实是一件天赐之物。考虑到最终来源于微积分的所有发现和技术,利用无穷解决复杂的几何问题一定是自古以来最棒的想法之一。

当然,公元前250年的人们根本无法预见到这一点。然而,无穷很快就有了一些令人印象深刻的表现,其中第一次和最好的一次是,它解决了一个由来已久的谜题:如何求圆的面积。

比萨证明

在开始进行详细的讨论之前,我先简述一下论证过程。它的策略是,把圆想象成一个比萨,然后把比萨切分成无穷多块,最后神奇地将比萨块排布成一个矩形。这样一来,我们就能算出圆的面积了,因为移动比萨块显然不会改变它们原来的面积,而且我们知道如何求矩形的面积:长乘以宽。其结果就是圆的面积公式。

为了便于论证,这个比萨必须是数学意义上的理想比萨,它完全平坦,为正圆形,而且饼皮无限薄。它的周长(用字母C表示)是饼皮外缘的长度,可以通过绕饼皮一周来测量。周长通常不是比萨爱好者关心的问题,但如果我们想知道,可以用卷尺测量出C的值(图1-2)。

我们感兴趣的另一个量是比萨的半径r,它的定义是从比萨的中心到其外缘上的任意一点的距离。特别要说明的是,如果所有比萨块都是等大的,而且是从中心切到外缘,那么r也是每个比萨块的直边长度(图1-3)。

假设我们把比萨切成4等份。尽管我们可以用图1-4所示的方法把它们重新组合起来,但看上去不太可能计算出它的面积。

这个新形状看起来像球根,它的顶边和底边都呈奇怪的荷叶边状。它当然不是一个矩形,所以我们很难猜出它的面积。我们似乎在倒退,但就像所有戏剧惯用的套路那样,在获胜之前英雄都免不了身陷困境。戏剧张力正在积累当中。

不过,即使被困于此,我们也应该注意到两件事,因为它们在整个论证过程中都成立,而且最终会给出我们要找的那个矩形的尺寸。第一件需要注意的事是,比萨饼皮外缘的1/2变成了新形状的弯曲顶边,另外1/2则变成了底边。所以,新形状的顶边和底边的长度都等于比萨周长的1/2,即C/2(图1-4)。我们将会看到,这个长度最终会变成矩形的长。第二件需要注意的事是,球根形状的斜直边正是原始比萨块的直边,所以它们的长度依然是r。这个长度最终会变成矩形的宽。

我们之所以还没看到关于期望矩形的任何迹象,是因为我们切分的比萨块不够多。如果我们把比萨切成8等份,然后按照图1-5所示的方式把它们重新组合起来,得到的图形看上去就会更接近于矩形。

事实上,这个比萨开始有点儿像平行四边形了。结果还不错,至少它正在逼近一个由直线围成的图形。新形状的顶边和底边也不像之前那样弯弯曲曲了,我们切分的比萨块的数量越多,它们就会变得越扁平。和之前一样,顶边和底边的长度还是C/2,斜边长度为r。

为了使整个图形更加规整,我们可以把最左侧的比萨块纵向切成等大的两部分,然后把其中一部分移到最右侧(图1-6)。

现在这个形状看起来就很像矩形了。不可否认的是,它仍然不够完美,因为饼皮的曲率导致该形状的顶边和底边呈荷叶边状,但至少我们在进步。

既然切分出更多比萨块似乎有所帮助,我们就继续切吧。在我们把比萨分成16等份,并像之前一样对最左侧的那块进行处理后,就会得到图1-7所示的结果。

我们切的份数越多,由比萨饼皮外缘产生的荷叶边状的顶边和底边就会变得越扁平。在这个过程中我们会得到一系列形状,它们都魔法般地趋近某个矩形,我们称该矩形为极限矩形(图1-8)。

这一切的关键在于,我们可以很容易地算出这个极限矩形的面积,即让它的长和宽相乘。那么,剩下的问题就是根据圆的尺寸找出矩形的长和宽了。由于比萨块都是竖直排列的,所以矩形的宽就是比萨的半径r。矩形的长等于比萨周长的1/2,这是因为在处理新形状的每个中间阶段,比萨饼皮外缘的1/2变成了矩形的顶边,另外1/2则变成了底边。因此,矩形的长等于比萨周长的1/2,即C/2。综上所述,极限矩形的面积可以用它的长乘以宽得出,即A=r×C/2=rC/2。而且,由于移动比萨块不会改变它们的面积,所以极限矩形的面积也一定是原始比萨的面积!

古希腊数学家阿基米德在《圆的度量》中首次证明了圆的面积为A=rC/2,他的论证过程与上文讲述的方法类似,但更加严谨。

就这个论证过程而言,最具创新性的方面在于无穷发挥作用的方式。当我们只把比萨分成4等份、8等份或16等份时,最好的情况不过是把比萨重新排布成一个有荷叶边的不完美形状。在经历了不太乐观的开端之后,我们切分的比萨块的数量越多,得到的新形状就越接近于矩形。但只有在我们把比萨切分成无穷多块的极限情况下,它才会变成一个真正的矩形。这就是微积分背后的伟大思想,在无穷远处,一切都变得更简单了。

极限与墙之谜

极限就像一个达成不了的目标,你可以离它越来越近,但你永远无法实现它。

比如,在比萨证明中,通过切分出足够多的比萨块并对它们进行重新排布,我们可以使有荷叶边的新形状越来越接近于矩形。但是,我们永远不能把它们变成真正的矩形,而只能接近那种完美状态。幸运的是,在微积分中,极限的不可到达性往往无关紧要。通过想象我们能到达极限,然后看看这种想象意味着什么,我们常常可以解决手头的问题。事实上,微积分领域的许多最伟大的先驱正是运用这种方法,取得了伟大的发现。他们并不是依靠逻辑,而是依靠想象力获得了巨大的成功。

极限是一个微妙的概念,它也是微积分的核心概念。它之所以难以解释,是因为这个概念在日常生活中并不常见。最贴切的类比可能是墙之谜:如果你走过了你和墙之间距离的1/2,再走剩下距离的1/2,接着走剩下距离的1/2……,你最终能到达墙根吗?(图1-9)

答案显然是否定的,因为墙之谜明确规定,你每次只能走你和墙之间距离的1/2,而不是全部。不管你走了10次、100万次还是多少次,你和墙之间总会有间隙。但同样明显的是,你可以任意地接近这堵墙。也就是说,通过足够多次的努力,你可以走到离墙1厘米、1毫米、1纳米(米),或者其他更小但不为零的距离范围内,但你永远无法真正走到墙根处。在这里,墙演的就是极限的角色。人们花费了大约2000年的时间,才给极限下了一个严格的定义。而在此之前,微积分领域的先驱只能依靠直觉。所以,即时你现在对极限的感觉还很模糊,也无须担心。通过分析一些实例,我们可以更好地了解它们。从现代的角度看,极限之所以重要,原因就在于它们是整个微积分领域的基石。

如果墙的比喻显得太过冷酷无情(谁会愿意去接近一堵墙呢?),不妨试试这个类比:任何接近极限的过程都像一位英雄在进行无止境的探索。它和西西弗斯面对的毫无希望的任务(他因触犯众神而受到惩罚,要把一块巨石滚上山顶,再眼睁睁地看着它滚下去,如此反反复复、无休无止)不同,这并非徒劳无功之举。当某个数学过程朝着某个极限逼近(比如,有荷叶边的形状趋近极限矩形)时,就好像故事的主人公正在为一个他明知道不可能实现但仍抱持着成功希望的目标而努力奋斗,这种希望是由他在竭力接近目标的过程中取得的稳步进展激发产生的。

0.333···的故事

为了强化“在无穷远处,一切都变得更简单了”和“极限就像无法实现的目标”之类的伟大思想,我们来看看下面的算术实例。这是一个将分数(比如1/3)转换为等值小数(在本例中,1/3=0.333···)的问题。我清楚地记得,我八年级的数学老师斯坦顿女士教过我们这类问题的计算方法。这件事之所以让我记忆犹新,是因为她突然讲到了无穷。

那一刻,我生平第一次听到一个成年人提及无穷。我的父母当然用不到它,它似乎是一个只有孩子才知道的秘密。在操场上,它总是以嘲弄和拾杠的方式出现。

“你是个混蛋!”

“是啊,好吧,你是两倍的混蛋!”

“你是无穷倍的混蛋!”

“你是无穷加一倍的混蛋!”

“那和无穷倍是一样的,你这个!”

这些有启发意义的对话让我确信,无穷的行为和普通数字不一样。当你给它加上1的时候,它不会变大,即使给它加上无穷也是这样。它的这种所向披靡的属性极其适用于终结校园内的争论,谁抢先使用它,谁就赢了。

但在斯坦顿女士提到无穷之前,没有其他老师跟我们谈论过这个问题。我们班的所有同学都已经知道有限小数了,因为它们常被用来表示金额,比如10.28美元的小数点后就有两位数。相比之下,无穷小数的小数点后有无穷位数,尽管它们乍看上去很奇怪,但和分数结合起来讨论就显得很自然了。

我们知道分数1/3也可以写成0.333···,最后的三个点表示无限重复的“3”。这对我来说很重要,因为当我试着用长除法计算1/3时,我发现自己陷入了一个无限循环:1不够被3除,所以假设1是10,那么10除以3等于3余1;现在我回到了起点,又要拿1去除以3。我无法跳出这个循环,这就是在0.333···中“3”不断重复的原因。

关于0.333···末尾的三个点,有两种解释。其中,朴素的解释是,在小数点右边确实肩并肩地排列着无穷多个“3”。当然,正因为有无穷多个“3”,所以我们不能把它们全部写下来,而改用三个点表示它们都在那里,或者至少在我们的脑海中。我把这种解释称为实无穷解释,在我们不愿意过多地思考无穷含义的情况下,它的优点是看上去简单明了、符合常理。

复杂的解释是,0.333···代表极限,就像在比萨证明中极限矩形是有荷叶边形状的极限,或者墙是倒霉步行者的极限一样。只不过,这里的0.333···代表对分数1/3进行除法运算后得到的连续小数的极限。随着除法运算的不断进行,在1/3的小数展开式中会产生越来越多的“3”。通过努力计算,我们可以得到一个尽可能接近1/3的近似值。如果对1/3≈0.3的结果不满意,那么我们可以再算一步得到1/3≈0.33,以此类推。我把这种解释称为潜无穷解释,其中的“潜”意味着近似值的小数位数可以根据需要不断增多。没有什么能阻止我们进行100万次、10亿次或者更多次数的除法运算。这种解释的优点是,我们永远不必引入像无穷这样令人摸不着头脑的概念,而可以继续利用有限的概念。

在处理像1/3=0.333···这样的等式时,我们采取哪种观点其实并不重要。它们同样站得住脚,而且在我们想进行的任何计算中都能得出相同的数学结果。但在数学领域,还存在实无穷解释可能会导致逻辑混乱的其他情况,这就是我在引言中提及无穷像怪物一样恐怖时所要表达的意思。对于某个过程产生的不断接近极限的结果,无穷有时候确实会让我们形成不同的看法。但假装这个过程已经结束,并且以某种方式到达了无穷境界,我们偶尔也会因此陷入麻烦。

无穷多边形的故事

举一个烧脑的例子。假设我们在一个圆上画一定数量的点,并使其均匀分布,然后用直线将它们相互连接起来。如果画3个点,那么我们会得到一个等边三角形;如果画4个点,那么我们会得到一个正方形;如果画5个点,那么我们会得到一个五边形;以此类推,我们可以画出一连串的直线形状,它们被称为正多边形(图1-10)。

请注意,我们画的点越多,得到的多边形就会越接近于圆形。与此同时,它们的边越来越短,数量越来越多。当我们按照边数从少到多的次序逐步推进时,多边形就会越来越接近于作为极限的原始圆。

于是,无穷再次成为连接两个世界的桥梁。这一次,它把我们从直线的世界带到了圆的世界,将棱角分明的多边形变成了如丝般光滑的圆形。而在比萨证明中,无穷则把我们从圆的世界带到了直线的世界,因为它把圆变成了矩形。

当然,在任何有限的阶段,多边形仍然只是多边形,它们还不是圆,也永远不会变成圆。尽管它们越来越接近于圆,但它们绝不会成为真正的圆。我们在这里谈论的是潜无穷,而不是实无穷。所以,从逻辑严密性的角度看,一切都无懈可击。

但如果多边形的边数不断逼近实无穷,会怎么样?最终得到的边长无限短的无穷多边形真的是一个圆吗?这种想法颇具吸引力,因为到那时多边形会变得光滑,它的所有角都被磨平了,看上去一切皆完美。

更多精彩阅读推荐阅读由中信出版社最新出版的《微积分的力量》。

《微积分的力量》

作者:[美]斯蒂夫·斯托加茨

译者:任烨

出版社:中信出版社

出版时间:2021.1

点击封面立即预订

(2月下旬发货)

《黑天鹅》作者纳西姆·尼古拉斯·塔勒布对这本书的评价是:“高能预警:这是一本危险的书。它会让你爱上数学,甚至有可能把你变成一位数学家。

内容简介:

微积分是人类历史上的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们更应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。

在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的“钥匙”打开了宇宙奥秘之“锁”?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响?

在《微积分的力量》书中,应用数学家兼“导游”斯托加茨将用一种“讲故事”和“看展览”的方式为你一一揭晓答案。“我们不必为了理解微积分的重要性而学习如何做运算,就像我们不必为了享用美食而学习如何做佳肴一样。我将借助图片、隐喻和趣闻逸事等,尝试解释你们需要了解的关于微积分的知识。我也会给你们介绍有史以来颇为精致的一些方程和证明,就像我们在参观画展的时候不会错过其中的代表作一样。”

在高中和大学时期,尽管我们中的许多人都对这门课程退避三舍,但斯托加茨用一种新颖独特和接地气儿的方式给我们讲述了微积分的历史。相信在读完《微积分的力量》后,我们都会对微积分有更加立体生动的认知,就像欣赏名画、名曲那样发现微积分之美。

作者简介:

美国康奈尔大学应用数学系教授、知名教师和数学家。他为《纽约时报》《纽约客》写作数学博客,也是美国科普电台、《科学星期五》的常驻嘉宾。他的主要代表作有《x的奇幻之旅》。他目前住在纽约伊萨卡。

目录(上下滑动查看)

引言 // 001

写给每个人的微积分读物 // 002

由微积分主宰的世界 // 004

微积分不只是一种语言 // 006

不合理的有效性 // 007

无穷原则 // 008

石巨人与无穷 // 010

曲线、运动和变化 // 011

第1章 无穷的故事 // 019

作为桥梁的无穷 // 023

比萨证明 // 024

极限与墙之谜 // 028

0.333…的故事 // 030

无穷多边形的故事 // 032

无穷的魅力和危险 // 033

除数为 0 的禁忌 // 034

实无穷之罪 // 036

芝诺悖论 // 037

芝诺悖论走向数字化 // 040

当芝诺悖论遇上量子力学 // 042

第2章 驾驭无穷的勇士 // 047

夹逼法与圆周率 // 051

圆周率之道 // 055

立体主义与微积分 // 057

奶酪论证 // 062

阿基米德方法 // 065

从计算机动画到面部手术 // 074

探索运动之谜 // 079

第3章 运动定律的探索之旅 // 081

亚里士多德的世界观 // 084

伽利略出场 // 088

下落、滚动与奇数定律 // 090

科学极简主义的艺术 // 093

从摆动的吊灯到GPS // 095

开普勒与行星运动之谜 // 102

开普勒第一定律:椭圆轨道 // 105

开普勒第二定律:相等的时间,相等的面积 // 107

开普勒第三定律:行星的公转周期 // 109

开普勒与伽利略的异同点 // 110

阴云密布 // 112

第4章 微分学的黎明 // 115

代数在东方的崛起 // 118

代数的兴起与几何学的衰落 // 119

代数与几何学的邂逅 // 121

方程与曲线 // 124

在一起,会更好 // 126

费马vs笛卡儿 // 126

寻找失传已久的发现方法——分析 // 129

行李箱的优化问题 // 131

费马如何帮助了美国联邦调查局?// 135

最短时间原理 // 142

关于切线的争论 // 146

近在眼前的应许之地 // 149

第5章 微积分的十字路口 // 151

函数的作用 // 155

幂函数 // 156

指数函数 // 157

10 的次方 // 158

对数 // 161

自然对数及其指数函数 // 164

指数增长与指数式衰减的机制 // 167

第6章 变化率和导数 // 171

微积分的三大核心问题 // 175

线性函数及其恒定的变化率 // 178

非线性函数及其不断变化的变化率 // 182

作为昼长变化率的导数 // 186

作为瞬时速度的导数 // 191

第7章 隐秘的源泉 // 199

面积、积分和基本定理 // 202

运动使基本定理更直观 // 203

恒定的加速度 // 206

用油漆滚筒证明基本定理 // 210

基本定理的意义 // 213

积分学的圣杯 // 214

局部vs整体 // 219

一个孤寂的男孩 // 221

玩转幂级数 // 223

混搭大师 // 228

私密的微积分 // 229

第8章 思维的虚构产物 // 233

眨眼之间 // 237

无穷小量 // 238

2.001 的立方 // 240

微分 // 242

微分求导法 // 243

通过微分推导出基本定理 // 245

莱布尼茨是如何发现微分和基本定理的?// 248

在微积分的帮助下对抗HIV // 255

第9章 宇宙的逻辑 // 263

自然的逻辑 // 267

二体问题 // 272

牛顿力学与《隐物》 // 275

牛顿微积分与《独立宣言》 // 276

连续体与离散集 // 278

常微分方程与偏微分方程 // 279

偏微分方程与波音 787 客机 // 282

无处不在的偏微分方程 // 285

第10 章 波、微波炉和脑成像 // 287

弦理论 // 292

为什么是正弦波?// 296

振动模态的可视化:克拉德尼图形 // 299

最值得尊崇的勇气 // 301

微波炉 // 302

为什么微波炉最初被称作雷达灶?// 303

CT与脑成像 // 304

第11 章 微积分的未来 // 311

DNA的缠绕数 // 315

决定论及其局限性 // 318

非线性 // 320

混沌 // 322

庞加莱图 // 324

走上战场的非线性 // 326

微积分与计算机联盟 // 327

复杂系统与高维诅咒 // 328

计算机、人工智能和洞察力之谜 // 332

结语 // 337

小数点后 8 位 // 337

发现正电子 // 339

可以理解的宇宙 // 341

致谢 // 345

注释 // 349

【关于数学的故事【祖冲之关于数学的故事】】相关文章:

1.动物故事精选:寓教于乐的儿童故事宝库

2.《寓教于乐:精选动物故事助力儿童成长》

3.探索动物旅行的奇幻冒险:专为儿童打造的童话故事

4.《趣味动物刷牙小故事》

5.探索坚韧之旅:小蜗牛的勇敢冒险

6.传统风味烤小猪,美食探索之旅

7.探索奇幻故事:大熊的精彩篇章

8.狮子与猫咪的奇妙邂逅:一场跨界的友谊故事

9.揭秘情感的力量:如何影响我们的生活与决策

10.跨越两岸:探索彼此的独特世界

上一篇:关于数学的故事50字(有关于数学的故事简短) 下一篇:关于文化传承的小故事—关于文化传承的名人故事简介